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a b s t r a c t 

Random Vector Functional-link (RVFL) networks, a class of learner models, can be regarded 

as feed-forward neural networks built with a specific randomized algorithm, i.e., the input 

weights and biases are randomly assigned and fixed during the training phase, and the 

output weights are analytically evaluated by the least square method. In this paper, we 

provide some insights into RVFL networks and highlight some practical issues and common 

pitfalls associated with RVFL-based modelling techniques. Inspired by the folklore that “all 

high-dimensional random vectors are almost always nearly orthogonal to each other”, we 

establish a theoretical result on the infeasibility of RVFL networks for universal approxima- 

tion, if a RVFL network is built incrementally with random selection of the input weights 

and biases from a fixed scope, and constructive evaluation of its output weights. This work 

also addresses the significance of the scope setting of random weights and biases in re- 

spect to modelling performance. Two numerical examples are employed to illustrate our 

findings, which theoretically and empirically reveal some facts and limits of such class of 

randomized learning algorithms. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Universal approximation capability of neural networks as the theoretical foundation for data modelling has been ex-

tensively studied in literature [5,6,8,17] . However, there are few works asserting theoretical bounds on the number of hid-

den nodes required [13,18] . In other words, a neural network model with fewer number of hidden nodes cannot ensure

modelling performance whilst a larger number of hidden nodes may lead to over-fitting phenomenon which implies poor

generalization performance. 

To resolve this problem, constructive schemes, which starts with a small size of network then incrementally generates

hidden nodes and output weights until an acceptable learning performance is achieved, have received considerable attention

in the past years [1,12] . Although some convergence properties of these methods can be theoretically established, there ex-

ist some limitations in practice due to the extensive search for the hidden parameters. Randomized learning techniques for

neural networks become popular in recent years because of their good potential in dealing with large-scale data analysis,

fast dynamic modelling, and real-time data processing [4,14,19,20,23] . To the best of our knowledge, researches on random-

ized algorithms for training neural networks can be tracked back to the 1980s [2] . For single hidden layer feed-forward

neural networks, Schmidt et al. tried to randomly assign the input weights and biases from [ −1,1] and calculate the output
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weights by solving a linear least square problem [21] . Unfortunately, such an attempt on the scope setting lacks scientific

justification and it could not ensure the universal approximation ability of the resulted model. In [15,16] , Pao and Takefji

proposed Random Vector Functional-link (RVFL) networks where the input weights and biases are randomly generated and

then fixed. RVFL networks have direct links from the input layer to the output layer, its output weights can be calculated

by using a pseudo-inverse of the hidden output matrix. In 1995, Igelnik and Pao established some significant results on

the approximation capability of RVFL networks [10] . As indicated in their proofs, however, the scope of the input weights

and biases is specified and data dependent. In [22] , Ivan and his co-workers compared RVFL approximators with Barron’s

greedy learning framework [1] , and examined the feasibility of RVFL networks. To simplify the specification of the random

parameters of in RVFL networks, Husmeier suggested to use symmetric and adjustable intervals for approximating a class of

nonlinear maps [9] . For more details about the history and recent developments of randomized method for training neural

networks, readers may refer to an informative editorial [23] . 

In this paper, we address some practical issues and common pitfalls in RVFL-based data modelling. Specifically, we look

into some impacts of the scope of random parameters on the model’s performance, and empirically show that a widely-

used setting (e.g [ −1 , 1] ) is misleading. Two illustrations are presented to clarify some incorrect perceptions about the way

to randomly assign the input weights and biases. Also, we provide a theoretical verification about the infeasibility of a class

of incremental RVFL (IRVFL) networks for universal approximation. Simulation results align with the theoretical analysis, and

demonstrate that IRVFL networks have technical limits to model nonlinear maps with arbitrary accuracy. 

The remainder of the paper is organized as follows. Section 2 briefly reviews constructive neural networks and presents

some practical considerations on RVFL networks. Section 3 provides our theoretical analysis that shows IRVFL networks with

specific coefficients will not universally approximate a given map. Section 4 reports some numerical results, revealing and

correcting some common pitfalls in randomized learning techniques. Section 5 concludes this paper with some remarks. 

2. Related work 

2.1. Constructive neural networks 

Let L 2 ( D ) denote the space of all Lebesgue-measurable functions f : R d → R on a compact set D ⊂ R d , with the L 2 norm

defined as ‖ f ‖ 2 := 

√ 〈 f, f 〉 = ( 
∫ 

D | f (x ) | 2 dx ) 1 / 2 where the inner product of f 1 and f 2 is defined as 〈 f 1 , f 2 〉 = 

∫ 
D f 1 (x ) f 2 (x ) dx .

For a target function f : R d → R , assume a single layer feed-forward network (SLFN) with L − 1 hidden nodes has already

been constructed, i.e., f L −1 (x ) = 

∑ L −1 
j=1 β j g j (w 

T 
j 
x + b j ) ( f 0 = 0 ). If the current residual error, denoted as e L −1 = f − f L −1 , is

still unacceptable, the problem of incremental learning becomes how to add βL , g L ( w L and b L ) leading to f L = f L −1 + βL g L
until the residual error e L = f − f L reaches a pre-defined tolerance ε for the given task, i.e., ‖ e L ‖ 2 ≤ ε. 

In [1] , Barron provided the framework of greedy approximation by using the classical Jones iteration method [11] . For

a target function f that belongs to closure of the convex hull of a given Hilbert space G , i.e., f ∈ conv (G ) , Barron’s con-

structive scheme aims at finding αL and g L that minimize ‖ αL f L −1 + (1 − αL ) g L − f‖ 2 at each step. However, this strategy

is only applicable to f ∈ conv (G ) rather than all Lebesgue-measurable functions f ∈ L 2 ( D ). Besides, the ability of f L may be

constrained because it is generated via a convex combination of f L −1 and g L , rather than optimizing the output weights over

the parameter space. 

In [12] , the authors proposed an approach by optimizing certain objective functions. Their proposed schemes can ensure

the convergence property of the constructed model, provided that g L , which maximizes 〈 e L −1 , g L 〉 2 / ‖ g‖ 2 2 
, can be found in

each incremental step. However, it is not easy to obtain an optimal g ∗
L 

as the optimization process might be frequently

plagued by local minima when performing gradient ascent methods. The optimization process required for building a new

hidden node is very inefficient, as mentioned in [12] . For many real world applications with large scale dataset and/or with

real-time data processing, it is impractical to iteratively find out the parameters of the hidden nodes. Thus, fast algorithms

for generating a new hidden node (basis function) are being expected. 

2.2. Some practical considerations on RVFL networks 

As indicated in [7] and [22] , some additional conditions on the families of functions to be approximated are requested to

ensure successful data modelling with a class of randomized approximators. It should be noticed that the universal approx-

imation theorem presented in [10] holds for certain appropriate range of random parameters in the hidden nodes. Some

theoretical analysis on the feasibility of randomized basis function approximators is given in [7] , which proved that in the

absence of certain additional conditions one may observe an exponential growth of the number of terms needed to ap-

proximate a nonlinear map, and the resulted model may be very sensitive to the random parameters. These work motivates

us to highlight some ‘risky’ aspects caused by the randomness in RVFL networks. In particular, the illogical way of simply

selecting a trivial range [ −1 , 1] for random assignment of the input weights and biases should be questioned and corrected.

3. Theoretical analysis 

This part aims to provide a theoretical analysis on the infeasibility of IRVFL networks for universal approximation. For

a target function f : R d → R , IRVFL networks start from generating one (hidden) node g 1 = g 1 (w 

T x + b 1 ) ( g is the activation

1 
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function) by randomly assigning w 1 and b 1 from [ −λ, λ] , λ > 0; then the output weight linking this newly added node to

the output layer is calculated by β1 = 〈 e 0 , g 1 〉 / ‖ g 1 ‖ 2 2 , where e 0 = f ; renew the error residual as e 1 = f − β1 g 1 (w 

T 
1 x + b 1 ) ;

adding new hidden nodes (one by one) by repeating these steps. 

Suppose a learner model with L hidden nodes, i.e., f L (x ) = 

∑ L 
j=1 β j g j (w 

T 
j 
x + b j ) , has been constructed, with the current

residual error denoted as e L = f − f L . Our analysis below focuses on the feasibility of the above incremental learning process,

in other words, whether or not e L converges to zero or is less than an expected tolerance ε for sufficiently large L , if its

decreasing rate is subject to certain limitation. 

Theorem 1. Let span ( �) be dense in L 2 and ∀ g ∈ �, 0 < ‖ g ‖ < b for some b ∈ R 

+ . Suppose that g L is randomly generated and

βL is given by 

βL = 

〈 e L −1 , g L 〉 
‖ g L ‖ 

2 
2 

. (1) 

For sufficiently large L, if the followings hold: 

‖ e L −1 ‖ 

2 
2 − ‖ e L ‖ 

2 
2 

‖ e L −1 ‖ 

2 
2 

≤ ε L < 1 , (2) 

and 

lim 

L →∞ 

L ∏ 

k =1 

(1 − ε k ) = ε > 0 . (3) 

Then, the constructive neural network with random weights, f L , has no universal approximation capability, that is, 

lim 

L →∞ 

‖ f − f L ‖ 2 ≥
√ 

ε ‖ f‖ 2 . (4) 

Proof. Simple computation can verify that the sequence {‖ e L ‖ 2 2 
} is monotonically decreasing and converges. Indeed, 

‖ e L ‖ 

2 
2 − ‖ e L −1 ‖ 

2 
2 

= 〈 e L −1 − βL g L , e L −1 − βL g L 〉 − 〈 e L −1 , e L −1 〉 
= −2 〈 e L −1 , βL g L 〉 + 〈 βL g L , βL g L 〉 
= −2 

〈 e L −1 , g L 〉 2 
‖ g L ‖ 

2 
2 

+ 

〈 e L −1 , g L 〉 2 
‖ g L ‖ 

2 
2 

= −〈 e L −1 , g L 〉 2 
‖ g L ‖ 

2 
2 

≤ 0 , (5) 

which means {‖ e L ‖ 2 2 
} is monotonically decreasing and converges because it is bounded by zero. 

From (2) , we can easily prove that 

‖ e L ‖ 

2 
2 ≥ (1 − ε L ) ‖ e L −1 ‖ 

2 
2 ≥

L ∏ 

k =1 

(1 − ε k ) ‖ f‖ 

2 
2 . (6) 

Therefore, we get 

lim 

L →∞ 

‖ e L ‖ 

2 
2 ≥ lim 

L →∞ 

L ∏ 

k =1 

(1 − ε k ) ‖ f ‖ 

2 
2 = ε‖ f ‖ 

2 
2 . (7) 

This completes the proof. �

Remark 1. It is easy to find a nonnegative decreasing sequence { εL }, for example, ε L = 

1 
4 L 2 

, that satisfies 

lim 

L →∞ 

L ∏ 

k =1 

( 1 − ε k ) = 

2 

π
> 0 . (8) 

Therefore, lim L →∞ 

‖ e L ‖ 2 = 

√ 

2 
π ‖ f‖ 2 , if (‖ e L −1 ‖ 2 2 

− ‖ e L ‖ 2 2 
) / (‖ e L −1 ‖ 2 2 

) ≤ 1 
4 L 2 

. 

On the other hand, the probability of the event (‖ e L −1 ‖ 2 2 
− ‖ e L ‖ 2 2 

) / (‖ e L −1 ‖ 2 2 
) ≤ ε L can be predicted by using the theo-

retical results in [3,7] , which provides a precise characterization of the folklore “all high-dimensional random vectors are

almost always nearly orthogonal to each other”. In particular, we can see that 

‖ e L −1 ‖ 

2 
2 − ‖ e L ‖ 

2 
2 

‖ e L −1 ‖ 

2 
= 

〈 e L −1 , g L 〉 2 
‖ e L −1 ‖ 

2 ‖ g L ‖ 

2 
= 〈 z 1 , z 2 〉 2 , (9) 
2 2 2 
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where z 1 = 

e L −1 ‖ e L −1 ‖ 2 and z 2 = 

g L ‖ g L ‖ 2 can be considered as two random vectors in R N with ‖ z 1 ‖ 2 = ‖ z 2 ‖ 2 = 1 . Based on the

results in [3,7] , we have 

P 

(‖ e L −1 ‖ 

2 
2 − ‖ e L ‖ 

2 
2 

‖ e L −1 ‖ 

2 
2 

≤ ε L 

)
≥ 1 − exp 

−Nε L , (10)

where P ( X ) stands for the probability of the event X . Indeed, (8) implies the fact that IRVFL networks, with the maximum

number of hidden nodes set as L max , is less feasible for data modelling with a specified tolerance η > 0 in the sense of

probability, that is, 

P 

(
‖ f − f L max 

‖ 2 ≥ η
)

≥ 1 − γ , (11)

where γ is sufficiently small when Nε L max 
is very large. 

Remark 2. For a sufficiently large N , each newly added hidden node produces one high-dimensional random variable. There-

fore, the phenomenon of almost orthogonality in high dimensions is inevitable during the course of construction. Unlike the

constructive scheme based on optimization techniques [12] , for example, maximizing 〈 e L −1 , g L 〉 2 / ‖ g L ‖ 2 2 , the process of gen-

erating new hidden nodes randomly with a fixed scope [ −λ, λ] has no guarantee to produce a feasible model in practice. 

4. Simulation results 

In this section, we present a series of simulation results to illustrate the significance of the scope of random parameters

in RVFL networks for modelling performance, and the infeasibility of a class of IRVFL networks for universal approximation.

Two functions are employed in this simulation study. All experiments are carried out by using MATLAB 7.0 on a computer

with 3.5GB RAM and 2.4 GHz Intel Core 2 Duo processor. 

4.1. Experimental setup 

The used sample data in simulations are generated by the following functions. 

• The first function is given by 

f 1 (x ) = 0 . 2 e −(10 x −4) 2 + 0 . 5 e −(80 x −40) 2 + 0 . 3 e −(80 x −20) 2 , x ∈ [0 , 1] . 

• The second function is a SinE function expressed by 

f 2 (x ) = 0 . 8 exp (−0 . 2 x ) sin (10 x ) , x ∈ [0 , 5] . 

Our objectives are to look into: (i) if the built randomized learner model with various scope settings can perform the

regression task; (ii) if the IRVFL networks with the specific configuration as discussed above can approximation these non-

linear functions through randomized learning techniques. Specifically, we detail our experiments associated with the afore-

mentioned objectives as followed: 

• Q1. Given N training samples, choose different number of hidden nodes L = αN, where α is selected from the set {0.2,

0.4, 0.6, 0.8, 1}. Is the hidden output matrix H (of size N × L ) full-rank or not, if randomly assigning the input weights

and biases from certain scopes. Besides, can the trained model approximate the target functions? 

• Q2. Given a number of training and test samples, can the error residual approach a sufficiently small tolerance ε, until L

(relatively large) hidden nodes are generated in IRVFL networks (detailed in Section 3 ). In addition, is the error changing

rate (i.e., r L = (‖ e L −1 ‖ 2 − ‖ e L ‖ 2 ) / ‖ e L −1 ‖ 2 ) significant for reducing the error residual? 

In this study, we generated randomly various numbers of both training and test data for f 1 and f 2 (with uniform distribu-

tion in [0,1] and [0,5], respectively). In particular, we take 10 0 0 points as the training data and another 10 0 0 points as the

test data in our experiments for Q2 . The sigmoidal activation function g(x ) = 1 / (1 + exp (−x )) is applied in our simulations.

4.2. Significance of the scope setting 

Tables 1 and 2 report some numerical results with various settings of the sample size N and the number of hidden

nodes L . For each case, the same number of test samples are used for performance evaluation. In Tables 1–4 (applicable

for Tables 5–8 as well), both average values and standard deviations (for rank values of H , training and test performance

in RMSE: root-mean-square error) are reported over 100 independent trials. In Table 1 , the scope for randomly assigning w

and b is set as [ −1 , 1] . It is found that in all cases H is NOT invertible, at the same time, both the training and test errors are

near 0.06, which indeed is far less than expected. In Table 2 , where the scope is chosen as [ −20 0 , 20 0] , both the training

and test errors become much smaller than that reported in Table 1 , showing that the resulted learner model has much
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Table 1 

Performance of RVFL networks on f 1 when w, b ∈ [ −1 , 1] . 

N = L Rank of H Training RMSE Test RMSE 

300 10 .68 ± 0.47 5.39e −2 ± 3.67e −4 5.27e −2 ± 3.51e −4 

500 10 .05 ± 0.22 6.96e −2 ± 2.40e −4 5.84e −2 ± 2.49e −4 

10 0 0 10 .00 ± 0 6.40e −2 ± 4.56e −6 6.44e −2 ± 3.83e −6 

1500 10 .00 ± 0 5.71e −2 ± 3.43e −6 6.41e −2 ± 3.53e −6 

20 0 0 10 .00 ± 0 6.40e −2 ± 2.37e −6 6.42e −2 ± 2.83e −6 

2500 10 .00 ± 0 5.89e −2 ± 3.33e −6 5.81e −2 ± 2.96e −6 

Table 2 

Performance of RVFL networks on f 1 when w, b ∈ [ −200 , 200] . 

N = L Rank of H Training RMSE Test RMSE 

300 91 .81 ± 7.12 8.68e −3 ± 7.29e −3 1.92e −1 ± 6.34e −1 

500 142 .08 ± 9.40 1.14e −3 ± 1.76e −3 1.79e −1 ± 9.70e −1 

10 0 0 258 .30 ± 12.10 1.74e −6 ± 4.94e −6 2.53e −6 ± 7.29e −6 

1500 333 .35 ± 8.93 1.25e −7 ± 1.71e −7 1.33e −7 ± 2.18e −7 

20 0 0 366 .65 ± 6.33 6.62e −8 ± 3.30e −8 6.80e −8 ± 3.28e −8 

2500 389 .98 ± 5.15 5.55e −8 ± 2.46e −8 5.59e −8 ± 2.44e −8 

Table 3 

Training performance of RVFL networks on f 1 when w, b ∈ [ −1 , 1] . 

N Training RMSE with L = αN

α = 0 . 2 α = 0 . 4 α = 0 . 6 α = 0 . 8 α = 1 

300 5.05e −2 ± 2.77e −5 5.00e −2 ± 2.74e −4 5.00e −2 ± 9.46e −5 5.05e −2 ± 1.74e −4 5.03e −2 ± 2.75e −4 

500 5.41e −2 ± 3.44e −4 5.43e −2 ± 1.22e −5 5.42e −2 ± 1.79e −4 5.37e −2 ± 4.52e −4 5.42e −2 ± 2.60e −4 

10 0 0 6.65e −2 ± 1.35e −5 6.65e −2 ± 8.73e −6 6.65e −2 ± 6.21e −6 6.65e −2 ± 5.59e −6 6.65e −2 ± 4.68e −6 

1500 6.01e −2 ± 7.83e −6 6.01e −2 ± 6.25e −6 6.01e −2 ± 4.62e −6 6.01e −2 ± 4.04e −6 6.01e −2 ± 3.52e −6 

20 0 0 6.45e −2 ± 9.49e −6 6.45e −2 ± 6.17e −6 6.45e −2 ± 4.84e −6 6.45e −2 ± 4.20e −6 6.45e −2 ± 3.84e −6 

2500 6.17e −2 ± 7.98e −6 6.17e −2 ± 4.32e −6 6.17e −2 ± 3.82e −6 6.17e −2 ± 3.05e −6 6.17e −2 ± 2.80e −6 

Table 4 

Training performance of RVFL networks on f 1 when w, b ∈ [ −200 , 200] . 

N Training RMSE with L = αN

α = 0 . 2 α = 0 . 4 α = 0 . 6 α = 0 . 8 α = 1 

300 4.70e −2 ± 7.91e −3 3.23e −2 ± 7.85e −3 2.15e −2 ± 9.47e −3 1.42e −2 ± 7.23e −3 7.85e −3 ± 6.14e −3 

500 5.07e −2 ± 1.75e −2 2.67e −2 ± 1.30e −2 9.45e −3 ± 7.45e −3 3.88e −3 ± 3.65e −3 1.21e −3 ± 1.75e −3 

10 0 0 2.12e −2 ± 9.52e −3 3.39e −3 ± 3.30e −3 4.41e −4 ± 9.63e −4 2.92e −5 ± 6.17e −5 5.04e −6 ± 2.76e −5 

1500 8.15e −3 ± 6.48e −3 4.76e −4 ± 9.06e −4 8.21e −6 ± 1.66e −5 1.74e −7 ± 2.50e −7 1.09e −7 ± 1.34e −7 

20 0 0 3.74e −3 ± 3.66e −3 5.28e −5 ± 2.09e −4 2.11e −7 ± 4.45e −7 5.47e −8 ± 2.58e −8 6.39e −8 ± 2.85e −8 

2500 1.18e −3 ± 1.34e −3 1.89e −6 ± 4.02e −6 4.67e −8 ± 2.63e −8 5.21e −8 ± 2.56e −8 5.40e −8 ± 2.18e −8 

Table 5 

Performance of RVFL networks on f 2 when w, b ∈ [ −1 , 1] . 

N = L Rank of H Training RMSE Test RMSE 

300 18 .40 ± 0.50 2.63e −1 ± 5.73e −3 2.70e −1 ± 7.34e −3 

500 18 .00 ± 0 2.83e −1 ± 3.21e −4 2.85e −1 ± 8.80e −4 

10 0 0 18 .00 ± 0 2.82e −1 ± 2.74e −4 2.72e −1 ± 3.89e −4 

1500 18 .00 ± 0 2.74e −1 ± 3.12e −4 2.83e −1 ± 2.76e −4 

20 0 0 17 .00 ± 0 2.81e −1 ± 2.76e −4 2.85e −1 ± 2.42e −4 

2500 17 .00 ± 0 2.82e −1 ± 2.13e −4 2.79e −1 ± 2.45e −4 

Table 6 

Performance of RVFL networks on f 2 when w, b ∈ [ −5 , 5] . 

N = L Rank of H Training RMSE Test RMSE 

300 43 .71 ± 0.69 1.82e −3 ± 8.63e −4 1.01e −1 ± 6.29e −2 

500 44 .27 ± 0.51 1.60e −3 ± 5.37e −4 2.26e −3 ± 6.97e −4 

10 0 0 44 .06 ± 0.24 1.58e −3 ± 2.98e −4 1.66e −3 ± 2.89e −4 

1500 44 .43 ± 0.50 1.42e −3 ± 3.03e −4 1.62e −3 ± 3.58e −4 

20 0 0 43 .63 ± 0.49 1.67e −3 ± 2.05e −4 1.72e −3 ± 2.20e −4 

2500 43 .66 ± 0.48 1.70e −3 ± 1.86e −4 1.75e −3 ± 1.81e −4 
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Table 7 

Training performance of RVFL networks on f 2 when w, b ∈ [ −1 , 1] . 

N Training RMSE with L = αN

α = 0 . 2 α = 0 . 4 α = 0 . 6 α = 0 . 8 α = 1 

300 2.60e −1 ± 2.61e −3 2.52e −1 ± 1.10e −2 2.56e −1 ± 6.15e −3 2.56e −1 ± 5.77e −3 2.47e −1 ± 1.19e −2 

500 2.65e −1 ± 1.94e −3 2.64e −1 ± 8.29e −4 2.64e −1 ± 1.74e −3 2.63e −1 ± 3.26e −3 2.64e −1 ± 4.77e −4 

10 0 0 2.74e −1 ± 1.26e −3 2.73e −1 ± 5.07e −4 2.73e −1 ± 3.87e −4 2.73e −1 ± 2.99e −4 2.73e −1 ± 2.96e −4 

1500 2.86e −1 ± 1.40e −3 2.88e −1 ± 1.27e −3 2.85e −1 ± 6.18e −4 2.85e −1 ± 2.86e −4 2.85e −1 ± 2.32e −4 

20 0 0 2.82e −1 ± 1.63e −3 2.83e −1 ± 1.18e −3 2.81e −1 ± 4.52e −4 2.81e −1 ± 1.35e −3 2.83e −1 ± 2.84e −4 

2500 2.86e −1 ± 6.68e −4 2.84e −1 ± 2.29e −3 2.86e −1 ± 3.50e −4 2.86e −1 ± 2.92e −4 2.86e −1 ± 2.97e −4 

Table 8 

Training performance of RVFL networks on f 2 when w, b ∈ [ −5 , 5] . 

N Training RMSE with L = αN

α = 0 . 2 α = 0 . 4 α = 0 . 6 α = 0 . 8 α = 1 

300 5.95e −2 ± 3.55e −2 1.02e −2 ± 1.04e −2 4.78e −3 ± 4.89e −3 2.40e −3 ± 1.04e −3 1.90e −3 ± 8.50e −4 

500 2.08e −2 ± 1.48e −2 3.78e −3 ± 2.72e −3 2.11e −3 ± 1.14e −3 1.85e −3 ± 6.28e −4 1.57e −3 ± 5.21e −4 

10 0 0 5.26e −3 ± 5.00e −3 2.14e −3 ± 9.67e −4 1.64e −3 ± 4.22e −4 1.70e −3 ± 3.25e −4 1.57e −3 ± 2.12e −4 

1500 3.18e −3 ± 1.58e −3 2.24e −3 ± 4.21e −4 1.83e −3 ± 3.65e −4 1.70e −3 ± 2.50e −4 1.48e −3 ± 3.09e −4 

20 0 0 2.67e −3 ± 1.10e −3 1.91e −3 ± 3.27e −4 1.64e −3 ± 2.04e −4 1.81e −3 ± 1.49e −4 1.75e −3 ± 1.90e −4 

2500 2.49e −3 ± 6.38e −4 2.01e −3 ± 3.08e −4 1.96e −3 ± 1.88e −4 1.90e −3 ± 1.49e −4 1.71e −3 ± 2.15e −4 

Table 9 

Training and test performance, real error decreasing rate, and the frequency of cases when E L ≤ 0.001 for IRVFL networks with L = 5000 and L = 10 , 000 . 

Target Scope Setting L = 50 0 0 L = 10 , 0 0 0 p 

E L r L ˜ E L E L r L ˜ E L 

f 1 λ = 1 0 .0867 1.0528e −6 0 .0894 0 .0861 6.0383e −7 0 .0889 0% 

λ = 5 0 .0701 3.3742e −7 0 .0720 0 .0689 5.2599e −6 0 .0708 0% 

λ = 10 0 .0608 7.1617e −6 0 .0629 0 .0594 9.7421e −7 0 .0617 0% 

λ = 50 0 .0511 7.2501e −6 0 .0556 0 .0501 2.5366e −6 0 .0546 0% 

λ = 100 0 .0470 3.6098e −6 0 .0513 0 .0443 1.3200e −5 0 .0483 0% 

λ = 150 0 .0440 2.2082e −5 0 .0481 0 .0403 3.1085e −5 0 .0442 0% 

λ = 200 0 .0419 3.4586e −5 0 .0459 0 .0393 7.2569e −5 0 .0411 0% 

f 2 λ = 1 0 .3722 6.0199e −7 0 .3691 0 .3715 1.8746e −7 0 .3687 0% 

λ = 5 0 .3558 9.5618e −7 0 .3618 0 .3538 1.4427e −6 0 .3594 0% 

λ = 10 0 .3130 6.4169e −6 0 .3149 0 .3008 3.0559e −6 0 .3033 0% 

λ = 50 0 .1996 3.2870e −5 0 .2046 0 .1753 1.1726e −5 0 .1798 0% 

λ = 100 0 .1569 5.8076e −5 0 .1616 0 .1186 2.2033e −4 0 .1223 0% 

λ = 150 0 .1429 2.9097e −5 0 .1474 0 .0979 1.6259e −4 0 .1012 0% 

λ = 200 0 .1348 1.6353e −4 0 .1411 0 .0868 9.4113e −5 0 .0909 0% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

better performance in both learning and generalization. Interestingly, the hidden layer output matrix H led by this special

scope is NOT full-rank as well. 

In Tables 3 and 4 , we have tried different settings of N and L = αN, α = [0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1] . As indicated in Table 3 where

w, b ∈ [ −1 , 1] , no matter in which circumstance ( N, L ), the corresponding training error is far more larger than expected.

Conversely, if w, b ∈ [ −200 , 200] , there are several pairs of ( N, L ) (highlighted with bold values in Table 4 ) that can lead to

acceptable and preferable performance. 

Similarly, the reported results of f 2 are in accordance with what we have mentioned for f 1 . That is to say, the scope

[ −1 , 1] for randomly assigning w and b lead to the same outcome, i.e., H is NOT full-rank, the training and test performance

is far away from acceptable levels. In contrast, RVFL networks with the specific scope [ −5 , 5] performs favourably in both

learning and generalization, as shown in Table 8 . 

4.3. Infeasibility of IRVFL networks 

Table 9 presents the training and test errors (RMSE), denoted as E L and 

˜ E L , and the error changing rate r L for L = 50 0 0

and L = 10 0 0 0 , with different settings of λ. The records of E L , ˜ E L , and r L are average values over 100 independent trials.

For each setting of λ, given ε = 0 . 001 as a training error tolerance, the frequency of cases with E L ≤ ε (denoted by p ) is

calculated over all 200 trials for L = 50 0 0 and L = 10 0 0 0 . It is believed that such large sized IRVFL networks are enough

to demonstrate its effectiveness and feasibility for approximation. It is interesting to see that the value of r L for each λ is

very small but the resulted training and test error are still far away from the given tolerance ε. Also, it can be clearly seen

in Fig. 1 , the residual errors keep decreasing but still stay above a level that is far away from zero. For each setting of λ,
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Fig. 1. Error decreasing trend of IRVFL networks with different settings of λ: (a) and (b) for f 1 , (c) and (d) for f 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the value of p (based on all the trials of L = 50 0 0 and L = 10 0 0 0 ) is equal to zero, which possibly implies that the errors

converge to a positive constant rather than zero. The approximation results for the case λ = 200 (on both the training and

test data) are plotted as subgraphs inside of Fig. 1 (a)–(d), by which the infeasibility of IRVFL networks can be observed. 

The comparison between RVFL networks and IRVFL networks is reported in Table 10 , where we only report the results

of some specific settings of λ and L . It can be found that the performance of IRVFL networks is far worse than that of RVFL

networks, with the same setting of λ and L . In Table 10 , some results of RVFL networks are highlighted to show that for

some reasonable scopes (like λ = 100 or λ = 200 for f 1 , λ = 5 or 10 for f 2 ), it is possible for RVFL networks to successfully

approximate these nonlinear maps. We plot the real approximation results of IRVFL networks and RVFL networks in Fig. 2 ,

where the dashed curves are the results of IRVFL networks while the solid curves represent the outcomes of RVFL networks.

4.4. Discussion and summary 

Clearly, our concerns in Q1 and Q2 have been addressed with empirical evidence. Specifically, Tables 1–8 verify that the

hidden output matrix H is NOT full-rank with very high probability, if the input weights and biases are randomly assigned

from certain scope (either [ −1 , 1] , [ −5 , 5] , or [ −20 0 , 20 0] ). In particular, the scope [ −1 , 1] makes RVFL networks unable to

model these two nonlinear maps, no matter how many training samples are provided or what sized RVFL networks are

used. However, there exist certain scopes (not unique) that can make RVFL networks to perform reasonably good for the

given functions. Here, we summarize our findings related to Q1 as followed. 

• R1 : Given a target function f and its N arbitrary distinct samples { x i , t i } N i =1 
, where x i ∈ R n and t i ∈ R . For any RVFL

network with L hidden nodes ( L = N) and the sigmoidal activation function g(x ) = 1 / (1 + exp (−x )) , there exist some
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Table 10 

Performance comparison between RVFL networks and IRVFL networks with dif- 

ferent settings of λ and L . 

Target Algorithms Training RMSE Test RMSE 

L = 200 L = 500 L = 200 L = 500 

f 1 IRVFL ( λ = 1 ) 0 .0993 0 .0991 0 .1023 0 .1022 

IRVFL ( λ = 100 ) 0 .0706 0 .0662 0 .0732 0 .0681 

IRVFL ( λ = 200 ) 0 .0704 0 .0643 0 .0730 0 .0661 

RVFL ( λ = 1 ) 0 .0676 0 .0676 0 .0693 0 .0693 

RVFL ( λ = 100 ) 0 .0161 2.84e −4 0 .0165 3.15e −4 

RVFL ( λ = 200 ) 0 .0230 1.25e −3 0 .0237 1.35e −3 

f 2 IRVFL ( λ = 1 ) 0 .3610 0 .3601 0 .3739 0 .3731 

IRVFL ( λ = 5 ) 0 .3477 0 .3473 0 .3605 0 .3599 

IRVFL ( λ = 10 ) 0 .3446 0 .3390 0 .3566 0 .3504 

RVFL ( λ = 1 ) 0 .2777 0 .2771 0 .2702 0 .2693 

RVFL ( λ = 5 ) 5.34e −3 1.85e −3 5.47e −3 1.92e −3 

RVFL ( λ = 10 ) 8.35e −4 6.03e −6 8.47e −4 6.32e −6 
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Fig. 2. Demonstration of test results for IRVFL networks and RVFL networks with different settings of λ: (a) for f 1 with L = 500 ; (b) for f 2 with L = 200 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

special scopes such that if the input weights and biases are randomly assigned from such scope, the hidden output

matrix H is NOT full-rank and ‖ Hβ − T ‖ = γ > 0 with probability one. 

Based on Tables 9, 10, Figs. 1 , and 2 , it can be concluded that IRVFL networks are ineffective and infeasible for data

modelling. It is found that the error decreasing rate of IRVFL networks will become very small after a few hidden nodes are

generated, if the scope for random parameters is fixed in advance. In practice, given a tolerance for error decreasing rate, the

incremental process of IRVFL networks is convergent but with an error residual still quite large. Furthermore, if the scope

for randomly assigning w and b are rigidly fixed in one scale (also noted in [7] ), there is a high probability that g L +1 ≈ g L
(under a certain degree of precision), which means the following incremental procedures are useless, as demonstrated in

Fig. 1 . 

• R2 : For some target functions, IRVFL networks generated incrementally by adding new hidden node g L with random

input weights and biases from a fixed scope, and the output weights calculated by βL = 〈 e L −1 , g L 〉 / ‖ g L ‖ 2 2 will not have a

chance to build a universal approximator, if the condition (3) is met. 

5. Conclusions 

This paper aims to draw attention on some practical issues and common pitfalls in using RVFL networks for data mod-

elling. The significance of the scope for randomly assigning hidden parameters in RVFL networks, as well as the algebraic

property (rank) of the hidden output matrix are addressed through numerical examples. It is risky to apply RVFL networks

for data modelling with a fixed scope setting (i.e., [ −1,1]). Also, as a technical contribution to the working field, we point

out the ineffectiveness and infeasibility of IRVFL networks that are incrementally generated by randomly assigning the input
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weights and biases. Our experimental results demonstrate some weaknesses and limits of RVFL networks for building fast

prediction models, if improper settings and configurations are used. Our findings reported in this paper will help in getting

better and correct understandings on the randomized learning techniques for neural networks. 

Further researches along this direction can be both theoretical aspects and algorithmic developments. For instance, ef-

ficiently constructing IRVFL networks that ensure the universal approximation capability; developing more reliable and se-

cured RVFL models for streaming data analysis. 
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